Как получить TCPO

Разбираем по косточкам компьютерные сети: HTTP, TCP, REST

Большинство разговоров о компьютерных сетях сводится к набору аббревиатур: HTTP, TCP, REST. Разберёмся в том, как всё устроено.

  • Сети подразумевают передачу информации.
  • Самый простой способ передачи информации – это текст.
  • Протоколы – это наборы соглашений, что обеспечивают передачу данных.

Если не углубляться в сложную терминологию, то хорошим примером передачи информации послужат системы мгновенного обмена сообщениями (англ. IM – Instant messaging). Viber, Skype, Messenger, etc. Все они имеют отдельные серверы и протоколы, оснащены своими особенностями и правилами передачи данных. Теперь разбираемся подробно.

TCP: что за зверь такой?

Протокол управления передачей (англ. TCP – Transmission Control Protocol) обеспечивает надежную доставку данных. Сервис TCP так и называется: reliable byte stream (надежная передача потока байт). Этот протокол отвечает за доставку данных и сохранение порядка передаваемых сообщений.

Поток может быть большим. Как же в этом случае работает протокол? Допустим, вы скачиваете файл, который весит несколько Гб. В протоколе поток будет разбиваться на сегменты, и каждый из этих сегментов – отправляться получателю. На стороне получателя все части снова собираются.

Чтобы обеспечить гарантию доставки данных, TCP использует подтверждение получения сообщений. Как это работает?

  1. От отправителя к получателю “уходит” некий сегмент данных.
  2. Приняв этот сегмент, получатель посылает отправителю подтверждение (ACK или Acknowledgement).
  3. Данный процесс повторяется, пока передаются данные.

А вот что происходит, если при передаче произошла ошибка: сегмент теряется в сети, не доходит до получателя, и подтверждение не отправляется. Со стороны отправителя есть таймер, который задает время ожидания подтверждения. По истечении этого времени и за неимением ACK сегмент отправляется повторно.

Вот только в протоколе TCP подтверждаются сразу несколько сегментов, которые отправляются друг за другом (механизм скользящего окна). В противном случае скорость обмена данными была бы ужасающе медленной.

В протоколе TCP также предусмотрена защита от дублирования и нарушения порядка сообщений (сообщения нумеруются).

Разбираемся с HTTP

Мы видим HTTP в каждой ссылке: http://google.com/. Что это значит? HTTP – это протокол передачи гипертекста. Грубо говоря, это тип разметки, которая добавляется в текстовые документы для определенного отображения текста. Например, в HTML используются теги:

Так это выглядит в браузере:

В стеке протоколов HTTP находится на прикладном уровне:

Он использует протокол TCP и порт сервера 80 (для клиента порт генерируется операционной системой).

Режим работы HTTP – запрос-ответ: клиент посылает серверу запрос на передачу web-страницы, после чего сервер пересылает эту страницу клиенту. При этом нет жестко заданного формата пакетов: используется текстовый режим.

Что такое REST?

REST представляет собой стиль архитектуры ПО для распределенных систем вроде World Wide Web. Используется, как правило, для построения веб-служб. Именно Рой Филдинг, один из авторов HTTP, ввел термин REST в 2000 году.

Это очень простой интерфейс управления данными, в котором не предусмотрены дополнительные внутренние «прослойки». Такой механизм означает передачу информации в точно том же виде, что и сама информация. Грубо говоря, мы не заворачиваем ее в XML, что присуще SOAP, не юзаем AMF, как Flash, etc.

Управление информацией основано на протоколе передачи данных. Наиболее распространенный – HTTP, о котором мы говорили ранее. В этом случае операции над информацией выполняются с помощью GET, PUT, POST, DELETE.

Протокол TCP: что нужно знать специалисту по анализу сетевого трафика!

По нашему опыту, когда дело доходит до низкоуровневого анализа TCP девять из десяти ИТ специалистов в компаниях среднего и крупного бизнеса чувствуют себя неуверенно. Не могут точно сказать, что такое ретрансмиссии, размер окна и т.д. Большинство материалов в интернете по этой теме больше походят на научные работы. В этой статье мы попытаемся донести с практической точки зрения, что же полезного прячет в себе протокол TCP для того, кто занимается анализом сетевого трафика.

В каких случаях нам нужен анализ TCP пакетов?

Как показывает практика, современные системы анализа сетевого трафика имеют большую базу протоколов и готовых шаблонов для программного обеспечения. Это позволяет без труда разбивать транзакции на логические части. К сожалению, далеко не для всех задач бизнеса удаётся найти готовые продукты и в каждой компании обязательно найдётся парочка «самописных» или кастомизированных приложений. Как же анализировать трафик от таких приложений?

База анализатора трафика не имеет информации, в каком бите содержится код реквеста, какой код соответствует респонсу и т.д. В таких ситуациях приходится прибегать к самым азам сетевой науки – TCP анализу. Давайте рассмотрим, что прячет внутри себя этот протокол.

По своей сути TCP является протоколом транспортного уровня. Он позволяет осуществить соединение одного сокета (IP-адрес + порт) хоста источника с сокетом хоста назначения. Заголовок IP будет содержать информацию, связанную с IP-адресами, а заголовок TCP — информацию о порте.

Заголовок TCP

Заголовки TCP перемещаются по сети для установления, поддержки и завершения TCP-соединений, а также передачи данных.

Рисунок 1. Заголовок TCP

В заголовке TCP содержаться следующие поля:

  • Source port (16 бит): порт источника. Порт хоста, от которого исходит запрос.
  • Destination port (16 бит): порт назначения. Порт хоста, куда направляется запрос.
  • Sequence number, SYN (32 бита): порядковый номер. Позволяет контролировать порядок сообщений. Каждая конечная точка (как порт источника, так и порт назначения) будут поддерживать свой уникальный порядковый номер для отправляемых сообщений. При установлении соединения TCP (используется сообщение с установленным флагом SYN) в качестве изначального порядкового номера будет сгенерировано случайное число. Вернее, не совсем случайно сгенерировано, а будет содержать конкретное 32-битное число, то есть в пределах от 0 до 4294967295 (или 2 в 32-ой степени возможных вариантов), которое будет соответствовать времени, прошедшему после перегрузки системы отправителя (из расчета +1 за каждые прошедшие 4 микросекунды), а также увеличенное на 64000 каждый раз при установлении нового соединения. Так как сгенерированное число будет уникальным для периода времени почти в пять часов (если при этом никакие соединения не устанавливались), то такой подход к выбору порядкового номера позволяет избежать случайных коллизий при передаче данных, когда для нескольких пакетов из разных соединений будет совпадать порядковый номер. В дальнейшем, при отправке следующих пакетов, значение порядкового номера будет увеличиваться на +1 для всех пакетов с флагом SYN, пакетов с флагом FIN и для каждого байта отправленных данных. Это позволяет принимающей системе обрабатывать пакеты в правильной последовательности, как они были сформированы при отправлении, а не в том порядке, как они были получены.
  • Acknowledgement number, ACK (32 бита): номер подтверждения. Когда сообщение содержит флаг ACK, то значение в номере подтверждения должно соответствовать следующему порядковому номеру (SYN), которое отправитель сообщения с флагом ACK ожидает получить от передающей системы. Таким образом, отправка одного номера подтверждения способна подтвердить получение всех байтов с информацией, полученных до этого. Более наглядно об использовании порядкового номера и номера подтверждения вы можете посмотреть на этом видео:

  • Data offset (4 бита): длина заголовка, известная также как смещение данных. Содержит размер заголовка TCP, измеряемый в 32-битных сегментах. Минимальный размер заголовка TCP составляет пять 32-битных сегментов (всего 20 байт), а максимальный — пятнадцать 32-битных сегмента (или 60 байт).
  • Reserved (3 бита): зарезервировано. Зарезервировано для будущего использования, пока просто забивается нулями. На данный момент осталось три незадействованных бита, в то время как еще три ранее зарезервированных бита уже используются как флаги.
  • Flags, 9 бит (флаги или управляющие биты):
    • NS (1 бит): одноразовая сумма (Nonce Sum). Используется для улучшения работы механизма явного уведомления о перегрузке (Explicit Congestion Notification, ECN).
    • CWR (1 бит): окно перегрузки уменьшено (Congestion Window Reduced). Данный флаг устанавливается отправителем, чтобы показать, что TCP-фрагмент был получен с установленным полем ECE. Таким образом, это является подтверждением получения пакета данных с флажком ECE от хоста получателя и включением отправителем механизма уменьшения перегрузки (Congestion Control), позволяющим оптимизировать отправку пакетов с данными в перегруженных сетях, избежав серьезных задержек из-за отбрасывания пакетов.
    • ECE (1 бит): ECN-Эхо (ECN-Echo). Выполняет двойственную роль, в зависимости от значения флага SYN. При установленном флаге SYN это указывает на то, что отправитель пакета поддерживает ECN. Если флаг SYN сброшен (SYN=0), а ECE установлен, то это означает, что пакет с установленным флагом CE (Congestion Experienced, Подтвержденная перегрузка) был получен в заголовке IP во время обычной передачи. Таким образом, это служит индикатором перегрузки сети (или предстоящей перегрузки) для TCP-отправителя.
    • URG (1 бит). Устанавливается, если необходимо передать ссылку на поле указателя срочности (Urgent pointer).
    • ACK (1 бит). Устанавливается, когда пакет содержит значение номера подтверждения в поле подтверждения. Все пакеты после стартового пакета SYN будут иметь установленный флаг ACK.
    • PSH (1 бит). Делает этот пакет пакетом PUSH (проталкивания). При нормальном потоке передачи данных система получателя не будет подтверждать получение каждого пакета сразу же после его получения. Вместо этого система получателя в течении некоторого времени будет собирать и хранить полученные данные в буфере, пока не передаст их приложению пользователя. Пакет PUSH инструктирует систему получателя немедленно передать все полученные ранее данные из буфера в приложение пользователя и сразу же отправить сообщение с подтверждением.
    • RST (1 бит): сброс данного соединения. Отправкой пакета RST одна из сторон сообщает о немедленном разрыве соединения. При этом соединение обрывается, а буфер очищается. Самые распространенные причины отправки пакета с установленным флагом RST — ответ на пакет, полученный для закрытого сокета; пользователь сам прервал соединение (например, закрыв браузер, не дожидаясь ответа); соединение не было нормально закрыто, но находится в неактивном состоянии некоторое время.
    • SYN (1 бит). Начинает соединение и синхронизирует порядковые номера. Первый пакет, отправленный с каждой стороны, должен в обязательном порядке иметь установленным этот флаг.
    • FIN (1 бит). Одна из конечных точек отправляет пакет с установленным флагом FIN для другой конечной точки, чтобы сообщить, что все пакеты были отправлены, и соединение пора завершить.
  • Window size (16 бит): размер окна приема. В нем указывается количество байт данных, считая от последнего номера подтверждения, которые готов принять отправитель данного пакета. Другими словами, отправитель данного пакета в этом поле сообщает другой стороне, каким доступным на данный момент размером буфера приема данных он располагает.
  • Checksum (16 бит): контрольная сумма. Используется для проверки на наличие ошибок при передаче и/или приеме отправленного пакета. Рассчитывается с учетом заголовка (все поля заголовка, кроме самой контрольной суммы), полезной нагрузки (неслужебные данные с полезной информацией, которая, собственно, и передается), а также псевдо-заголовка (IP-адрес источника, IP-адрес назначения, номер протокола и длина TCP-сегмента, в которой учитывается как длина полей заголовка, так и длина данных полезной нагрузки). Более детально о расчете контрольной суммы вы можете прочитать здесь (http://www.tcpipguide.com/free/t_TCPChecksumCalculationandtheTCPPseudoHeader-2.htm).
  • Urgent pointer (16 бит): указатель срочности. Если установлен флаг URG, то это означает, что поле указателя срочности содержит численное значение положительного смещения от порядкового номера в сообщении, указывающее на последний байт срочных данных. После получения TCP-сегмента с флагом URG, установленным в значение «1», приемное устройство смотрит на поле указателя срочности и по его значению определяет, какие данные в сегменте являются срочными. Затем эти срочные данные сразу же направляются в приложение пользователя с указанием того, что отправитель пометил данные как срочные. Остальные данные в данном сегменте, как, к слову, и накопившиеся до этого в буфере приема, обрабатываются в нормальном режиме. Этим принцип обработки в сообщении флага URG отличается от обработки флага PSH, при получении которого вся информация из буфера, а не только срочная из сообщения, немедленно передается в приложение пользователя. Более детально об передаче данных в TCP при установленном указателе срочности вы можете узнать здесь (http://www.tcpipguide.com/free/t_TCPPriorityDataTransferUrgentFunction-2.htm).

Механизм передачи сообщений TCP

Перед тем, как данные могут быть переданы между двумя узлами, в TCP, в отличие от UDP, предусмотрена стадия установки соединения. Также, после того, как все данные были переданы, наступает стадия завершения соединения. Таким образом, осуществление каждого TCP-соединения можно условно разделить на три фазы:

Установка соединения осуществляется с помощью, так называемого трехстороннего рукопожатия TCP. Инициатором соединения может выступать любая сторона. Однако чтобы упростить рассмотрения данного вопроса в рамках данной статьи, мы рассмотрим пример, когда клиент инициализирует соединение с сервером.

Рисунок 2. Трехстороннее рукопожатие TCP

(Пакет №1). Клиент отправляет пакет с установленным флагом SYN и случайным числом («R1»), включенным в поле порядкового номера (sequence number).

(Пакет №2). При получении пакета №1 сервер в ответ отправляет пакет с установленным флагом SYN, а также с установленным флагом ACK. Поле порядкового номера будет содержать новое случайное число («R2»), а поле номера подтверждения будет содержать значение порядкового номера клиента, увеличенного на единицу (то есть «R1 + 1»). Таким образом, он будет соответствовать следующему порядковому номеру, который сервер ожидает получить от клиента.

(Пакет №3). В ответ на пакет SYN от сервера (пакет №2) клиент отправляет пакет с установленным флагом ACK и полем номера подтверждения с числом «R2 + 1». По аналогии, это число будет соответствовать следующему порядковому номеру, который клиент ожидает получить от сервера.

Читайте также:  Подходящий вид

После инициализации соединения полезная нагрузка будет перемещаться в обоих направлениях TCP-соединения. Все пакеты в обязательном порядке будут содержать установленный флаг ACK. Другие флаги, такие как, например, PSH или URG, могут быть, а могут и не быть установленными.

При нормальном завершении TCP-соединения в большинстве случаев инициализируется процедура, называемая двухсторонним рукопожатием, в ходе которой каждая сторона закрывает свой конец виртуального канала и освобождает все задействованные ресурсы. Обычно эта фаза начинается с того, что один из задействованных процессов приложения сигнализирует своему уровню TCP, что сеанс связи больше не нужен. Со стороны этого устройства отправляется сообщение с установленным флагом FIN (отметим, что этот пакет не обязательно должен быть пустым, он также может содержать полезную нагрузку), чтобы сообщить другому устройству о своем желании завершить открытое соединение. Затем получение этого сообщения подтверждается (сообщение от отвечающего устройства с установленным флагом ACK, говорящем о получении сообщения FIN). Когда отвечающее устройство готово, оно также отправляет сообщение с установленным флагом FIN, и, после получения в ответ подтверждающего получение сообщения с установленным флагом ACK или ожидания определенного периода времени, предусмотренного для получения ACK, сеанс полностью закрывается. Состояния, через которые проходят два соединенных устройства во время обычного завершения соединения, отличаются, потому что устройство, инициирующее завершение сеанса, ведет себя несколько иначе, чем устройство, которое получает запрос на завершение. В частности, TCP на устройстве, получающем начальный запрос на завершение, должен сразу информировать об этом процесс своего приложения и дождаться от него сигнала о том, что приложение готово к этой процедуре. Инициирующему устройству не нужно это делать, поскольку именно приложение и выступило инициатором. Более подробно завершении TCP-соединения смотрите здесь (http://www.tcpipguide.com/free/t_TCPConnectionTermination-2.htm).

Рисунок 3. Завершение TCP-соединения

  • Keep-alive или повторное использование соединений

На уровне TCP нет сообщений типа «keep-alive», и поэтому, даже если сеанс соединения в какой-то момент времени становится неактивным, он все равно будет продолжаться до тех пор, пока не будет отправлен следующий пакет.

Когда мы отправляем HTTP-запрос по сети, нам сразу нужно создать TCP-соединение. Однако в HTTP 1.0 возможность повторного использования соединения по умолчанию закрыта (если заголовок «keep-alive = close» дополнительно не включен в заголовок HTTP), то есть TCP-соединение автоматически закрывается после получения запроса и отправки ответа. Так как процесс создания TCP-соединения относительно затратный (он требует дополнительных затрат процессорных ресурсов и памяти, а также увеличивает сетевой обмен между сервером и клиентом, что особенно становится актуальным при создании защищенных соединений), то все это увеличивает количество лагов и повышает вероятность перегрузки сети. Поэтому для HTTP 1.1 было решено оставлять TCP-соединение открытым до тех пор, пока одна из сторон не решит прекратить его.

С другой стороны, если соединения не будут закрываться после того, как клиенты получат все необходимые им данные, задействованные ресурсы сервера для поддержания этих соединений не будут доступны другим клиентам. Поэтому HTTP-серверы, чтобы обеспечить больший контроль над потоком данных, используют временные интервалы (таймауты) для поддержки функциональности «keep-alive» для неактивных соединений (длящихся по умолчанию, в зависимости от архитектуры и конфигурации сервера, не более нескольких десятков секунд, а то и просто нескольких секунд), а также максимальное число отправляемых запросов «keep-alive», прежде чем сеанс без активного соединения будет остановлен. Более подробно о функциональности «keep-alive» вы можете узнать здесь (https://blog.stackpath.com/glossary/keep-alive/).

Подписывайтесь на рассылку, делитесь статьями в соцсетях и задавайте вопросы в комментариях!

Что такое TCP и как он работает?

Протокол управления передачей (TCP) является одним из самых важных протоколов пакета Internet Protocols. Это наиболее широко используемый протокол для передачи данных в сети связи, такой как Интернет.

  • TCP — надежный протокол. То есть, приемник всегда отправляет отправителю положительное или отрицательное подтверждение о пакете данных, так что отправитель всегда имеет яркое представление о том, достигнут ли пакет данных адресату или ему нужно повторно отправить его.
  • TCP гарантирует, что данные достигнут назначенного адресата в том же порядке, в котором он был отправлен.
  • TCP ориентирован на соединение. TCP требует установления соединения между двумя удаленными точками перед отправкой фактических данных.
  • TCP обеспечивает механизм проверки и восстановления ошибок.
  • TCP обеспечивает сквозную связь.
  • TCP обеспечивает контроль потока и качество обслуживания.
  • TCP работает в режиме «точка-точка» Client / Server.
  • TCP обеспечивает полный дуплексный сервер, т. Е. Он может выполнять роли как получателя, так и отправителя.

Длина заголовка TCP составляет минимум 20 байтов и максимум 60 байт.

  • Source Port (16 бит). Он определяет порт источника процесса приложения на отправляющем устройстве.
  • Destination Port (16 бит) — определяет порт назначения процесса приложения на принимающем устройстве.
  • Sequence Number (32 бита) — порядковый номер байтов данных сегмента в сеансе.
  • Acknowledgement Number (32 бита). Когда установлен флаг ACK, это число содержит следующий порядковый номер ожидаемого байта данных и работает как подтверждение предыдущих полученных данных.
  • Data Offset (4 бита). В этом поле подразумеваются как размер заголовка TCP (32-разрядные слова), так и смещение данных в текущем пакете во всем сегменте TCP.
  • Reserved (3 бита) — зарезервировано для будущего использования, и все по умолчанию устанавливаются в ноль.
  • Флаги (по 1 бит)
    • NS — бит Nonce Sum используется сигнальным процессом Явного сообщения о перегрузке.
    • CWR. Когда хост получает пакет с установленным битом ECE, он устанавливает, что Congestion Windows Reduced подтверждает, что полученная от ЕС.
    • ECE — имеет два значения:
      • Если бит SYN очищен до 0, значит, ECE означает, что пакет IP имеет установленный бит CE (перегрузка).
      • Если бит SYN установлен в 1, ECE означает, что устройство поддерживает ECT.
    • URG — указывает, что поле Urgent Pointer имеет значительные данные и должно обрабатываться.
    • ACK — указывает, что поле «Подтверждение» имеет значение. Если ACK очищен до 0, это означает, что пакет не содержит подтверждения.
    • PSH — если установлено, это запрос на принимающую станцию ​​на данные PUSH (как только это произойдет) в принимающее приложение без его буферизации.
    • RST — флаг сброса. Он используется для отказа от входящего соединения, отклонения сегмента, перезапуска соединения.
    • SYN — этот флаг используется для настройки соединения между хостами.
    • FIN — этот флаг используется для освобождения соединения, и после этого больше не обменивается данными. Поскольку пакеты с символами SYN и FIN имеют порядковые номера, они обрабатываются в правильном порядке.
  • Windows Size — это поле используется для управления потоком между двумя станциями и указывает объем буфера (в байтах), выделенный получателем для сегмента, т. Е. Сколько данных ожидает приемник.
  • Checksum — это поле содержит контрольную сумму заголовков, данных и псевдо-заголовков.
  • Urgent Pointer. Он указывает на аварийный байт данных, если флаг URG установлен в 1.
  • Options — обозначает дополнительные опции, которые не покрываются обычным заголовком. Поле опций всегда описывается в 32-битных словах. Если это поле содержит данные размером менее 32 бит, для заполнения оставшихся битов используется дополнение, чтобы достичь 32-разрядной границы.

Адресация

Связь TCP между двумя удаленными хостами выполняется с помощью номеров портов (TSAP). Номера портов могут варьироваться от 0 до 65535, которые делятся как:

  • Порты системы (0 — 1023)
  • Порты пользователей (1024 — 49151)
  • Частные / динамические порты (49152 — 65535)

Управление подключениями

Связь TCP работает в модели Server / Client. Клиент инициирует соединение, и сервер либо принимает, либо отклоняет его. Для управления подключением используется трехстороннее связывание.

Установка соединения

Клиент инициирует соединение и отправляет сегмент с порядковым номером. Сервер подтверждает это со своим собственным порядковым номером и ACK сегмента клиента, который является еще одним номером последовательности клиентов. Клиент после получения ACK своего сегмента отправляет подтверждение ответа сервера.

Любой из серверов и клиентов может отправлять сегмент TCP с флагом FIN, установленным в 1. Когда принимающая сторона отвечает на это посредством ACKnowlinging FIN, это направление связи TCP закрывается и соединение освобождается.

Управление полосой пропускания

TCP использует концепцию размера окна, чтобы удовлетворить потребность в управлении пропускной способностью. Размер окна сообщает отправителю на удаленном конце, количество сегментов байтов данных, которое может получить приемник с этого конца. TCP использует медленную фазу запуска с использованием размера окна 1 и увеличивает размер окна по экспоненте после каждого успешного сообщения.

Например, клиент использует размер окна 2 и отправляет 2 байта данных. Когда подтверждение этого сегмента получено, размер окна удваивается до 4, а следующий отправленный сегмент отправляется длиной 4 байта данных. Когда получено подтверждение 4-байтового сегмента данных, клиент устанавливает размер окна 8 и т. Д.

Если упущено подтверждение, то есть данные, потерянные в транзитной сети или полученные NACK, размер окна уменьшается до половины, а медленная начальная фаза начинается снова.

Контроль ошибок и контроль потока

TCP использует номера портов, чтобы узнать, какой процесс приложения ему нужен для передачи сегмента данных. Наряду с этим он использует порядковые номера для синхронизации с удаленным хостом. Все сегменты данных отправляются и принимаются с порядковыми номерами. Отправитель знает, какой последний сегмент данных был принят Получателем, когда он получает ACK. Получатель знает о последнем сегменте, отправленном отправителем, ссылаясь на порядковый номер недавно полученного пакета.

Если порядковый номер недавно полученного сегмента не совпадает с порядковым номером, который ожидал приемник, он отбрасывается и NACK отправляется обратно. Если два сегмента поступают с одинаковым порядковым номером, значение временной метки TCP сравнивается для принятия решения.

Мультиплексирование

Способ объединения двух или более потоков данных в один сеанс называется мультиплексированием. Когда клиент TCP инициализирует соединение с сервером, он всегда ссылается на четко определенный номер порта, который указывает на процесс приложения. Сам клиент использует случайный номер порта из частных пулов номеров портов.

Используя TCP Multiplexing, клиент может взаимодействовать с несколькими различными процессами приложения за один сеанс. Например, клиент запрашивает веб-страницу, которая, в свою очередь, содержит различные типы данных (HTTP, SMTP, FTP и т. Д.), Тайм-аут сеанса TCP увеличивается, и сеанс остается открытым на более длительное время, так что накладные расходы на трехстороннюю рукопожатие могут избегать.

Это позволяет клиентской системе получать несколько соединений по одному виртуальному соединению. Эти виртуальные соединения не подходят для серверов, если тайм-аут слишком длинный.

Контроль перегрузок

Когда большое количество данных подается в систему, которая не способна обрабатывать ее, происходит перегрузка. TCP управляет перегрузкой с помощью механизма Window. TCP устанавливает размер окна, говорящий на другом конце, сколько сегмента данных нужно отправить. TCP может использовать три алгоритма управления перегрузкой:

  • Аддитивное увеличение, мультипликативное уменьшение
  • Медленный старт
  • Время ожидания

Управление таймером

TCP использует различные типы таймеров для управления и управления различными задачами:

Таймер сохранения:

  • Этот таймер используется для проверки целостности и действительности соединения.
  • Когда время ожидания сохраняется, хост отправляет пробник, чтобы проверить, существует ли соединение еще.

Таймер повторной передачи:

  • Этот таймер поддерживает сеанс передачи данных с сохранением состояния.
  • Если подтверждение отправленных данных не будет получено в течение времени повторной передачи, сегмент данных будет отправлен снова.

Постоянный таймер:

  • Сеанс TCP может быть приостановлен хостом, отправив Размер окна 0.
  • Чтобы возобновить сеанс, хосту необходимо отправить размер окна с некоторым большим значением.
  • Если этот сегмент никогда не достигнет другого конца, оба конца могут ждать друг друга в течение бесконечного времени.
  • Когда таймер Persist истекает, хост повторно отправляет свой размер окна, чтобы узнать другой конец.
    Persist Timer помогает избежать взаимоблокировок в общении.

Timed-Wait:

  • После освобождения соединения один из хостов ждет времени с пометкой времени, чтобы полностью завершить соединение.
  • Это делается для того, чтобы убедиться, что другой конец получил подтверждение своего запроса о завершении соединения.
  • Выдержка может быть не более 240 секунд (4 минуты).

Восстановление после аварий

TCP — очень надежный протокол. Он предоставляет порядковый номер для каждого байта, отправленного в сегменте. Он обеспечивает механизм обратной связи, т.е. когда хост получает пакет, он привязан к ACK, чтобы ожидал пакет, имеющий следующий порядковый номер (если он не является последним сегментом).

Когда TCP-сервер прерывает связь в середине и перезапускает его процесс, он отправляет трансляцию TPDU всем своим хостам. Затем хосты могут отправить последний сегмент данных, который никогда не был непризнан и продолжен.

Протокол TCP/IP или как работает Интернет (для чайников)

Автор: Дубровин Борис, 13 сентября 2007 г. 18:32

В основе работы глобальной сети Интернет лежит набор (стек) протоколов TCP/IP. Но эти термины лишь на первый взгляд кажутся сложными. На самом деле стек протоколов TCP/IP — это простой набор правил обмена информацией, и правила эти на самом деле вам хорошо известны, хоть вы, вероятно, об этом и не догадываетесь. Да, все именно так, по существу в принципах, лежащих в основе протоколов TCP/IP, нет ничего нового: все новое — это хорошо забытое старое.

Человек может учиться двумя путями:

  1. Через тупое формальное зазубривание шаблонных способов решения типовых задач (чему сейчас в основном и учат в школе). Такое обучение малоэффективно. Наверняка вам приходилось наблюдать панику и полную беспомощность бухгалтера при смене версии офисного софта – при малейшем изменении последовательности кликов мышки, требуемых для выполнения привычных действий. Или приходилось видеть человека, впадающего в ступор при изменении интерфейса рабочего стола?
  2. Через понимание сути проблем, явлений, закономерностей. Через понимание принципов построения той или иной системы. В этом случае обладание энциклопедическими знаниями не играет большой роли – недостающую информацию легко найти. Главное – знать, что искать. А для этого необходимо не формальное знание предмета, а понимание сути.
Читайте также:  Достоинства итальянской мебели

В этой статье я предлагаю пойти вторым путем, так как понимание принципов, лежащих в основе работы Интернета, даст вам возможность чувствовать себя в Интернете уверенно и свободно — быстро решать возникающие проблемы, грамотно формулировать проблемы и уверенно общаться с техподдержкой.

Принципы работы интернет-протоколов TCP/IP по своей сути очень просты и сильно напоминают работу нашей советской почты.

Вспомните, как работает наша обычная почта. Сначала вы на листке пишете письмо, затем кладете его в конверт, заклеиваете, на обратной стороне конверта пишете адреса отправителя и получателя, а потом относите в ближайшее почтовое отделение. Далее письмо проходит через цепочку почтовых отделений до ближайшего почтового отделения получателя, откуда оно тетей-почтальоном доставляется до по указанному адресу получателя и опускается в его почтовый ящик (с номером его квартиры) или вручается лично. Все, письмо дошло до получателя. Когда получатель письма захочет вам ответить, то он в своем ответном письме поменяет местами адреса получателя и отправителя, и письмо отправиться к вам по той же цепочке, но в обратном направлении.

На конверте письма будет написано примерно следующее:

Теперь мы готовы рассмотреть взаимодействие компьютеров и приложений в сети Интернет (да и в локальной сети тоже). Обратите внимание, что аналогия с обычной почтой будет почти полной.

Каждый компьютер (он же: узел, хост) в рамках сети Интернет тоже имеет уникальный адрес, который называется IP-адрес (Internet Protocol Address), например: 195.34.32.116. IP адрес состоит из четырех десятичных чисел (от 0 до 255), разделенных точкой. Но знать только IP адрес компьютера еще недостаточно, т.к. в конечном счете обмениваются информацией не компьютеры сами по себе, а приложения, работающие на них. А на компьютере может одновременно работать сразу несколько приложений (например почтовый сервер, веб-сервер и пр.). Для доставки обычного бумажного письма недостаточно знать только адрес дома — необходимо еще знать номер квартиры. Также и каждое программное приложение имеет подобный номер, именуемый номером порта. Большинство серверных приложений имеют стандартные номера, например: почтовый сервис привязан к порту с номером 25 (еще говорят: «слушает» порт, принимает на него сообщения), веб-сервис привязан к порту 80, FTP – к порту 21 и так далее.

Таким образом имеем следующую практически полную аналогию с нашим обычным почтовым адресом:

В компьютерных сетях, работающих по протоколам TCP/IP, аналогом бумажного письма в конверте является пакет, который содержит собственно передаваемые данные и адресную информацию — адрес отправителя и адрес получателя, например:

Конечно же в пакетах также присутствует служебная информация, но для понимания сути это не важно.

Обратите внимание, комбинация: “IP адрес и номер порта” – называется “сокет”.

В нашем примере мы с сокета 82.146.49.55:2049 посылаем пакет на сокет 195.34.32.116:53, т.е. пакет пойдет на компьютер, имеющий IP адрес 195.34.32.116, на порт 53. А порту 53 соответствует сервер распознавания имен (DNS-сервер), который примет этот пакет. Зная адрес отправителя, этот сервер сможет после обработки нашего запроса сформировать ответный пакет, который пойдет в обратном направлении на сокет отправителя 82.146.49.55:2049, который для DNS сервера будет являться сокетом получателя.

Как правило взаимодействие осуществляется по схеме «клиент-сервер»: “клиент” запрашивает какую-либо информацию (например страницу сайта), сервер принимает запрос, обрабатывает его и посылает результат. Номера портов серверных приложений общеизвестны, например: почтовый SMTP сервер «слушает» 25-й порт, POP3 сервер, обеспечивающий чтение почты из ваших почтовых ящиков «слушает» 110-порт, веб-сервер – 80-й порт и пр.

Большинство программ на домашнем компьютере являются клиентами – например почтовый клиент Outlook, веб-обозреватели IE, FireFox и пр.

Номера портов на клиенте не фиксированные как у сервера, а назначаются операционной системой динамически. Фиксированные серверные порты как правило имеют номера до 1024 (но есть исключения), а клиентские начинаются после 1024.

Повторение – мать учения: IP — это адрес компьютера (узла, хоста) в сети, а порт — номер конкретного приложения, работающего на этом компьютере.

Однако человеку запоминать цифровые IP адреса трудно – куда удобнее работать с буквенными именами. Ведь намного легче запомнить слово, чем набор цифр. Так и сделано – любой цифровой IP адрес можно связать с буквенно-цифровым именем. В результате например вместо 82.146.49.55 можно использовать имя www.ofnet.ru. А преобразованием доменного имени в цифровой IP адрес занимается сервис доменных имен — DNS (Domain Name System).

Рассмотрим подробнее, как это работает. Ваш провайдер явно (на бумажке, для ручной настройки соединения) или неявно (через автоматическую настройку соединения) предоставляет вам IP адрес сервера имен (DNS). На компьютере с этим IP адресом работает приложение (сервер имен), которое знает все доменные имена в Интернете и соответствующие им цифровые IP адреса. DNS-сервер «слушает» 53-й порт, принимает на него запросы и выдает ответы, например:

Теперь рассмотрим, что происходит, когда в своем браузере вы набираете доменное имя (URL) этого сайта (www.ofnet.ru) и, нажав , в ответ от веб-сервера получаете страницу этого сайта.

Набираем в адресной строке браузера доменное имя www.ofnet.ru и жмем . Далее операционная система производит примерно следующие действия:

Отправляется запрос (точнее пакет с запросом) DNS серверу на сокет 195.34.32.116:53. Как было рассмотренно выше, порт 53 соответствует DNS-серверу – приложению, занимающемуся распознаванием имен. А DNS-сервер, обработав наш запрос, возвращает IP-адрес, который соответствует введенному имени.

Диалог примерно следующий:

Далее наш компьютер устанавливает соединение с портом 80 компьютера 82.146.49.55 и посылает запрос (пакет с запросом) на получение страницы www.ofnet.ru. 80-й порт соответствует веб-серверу. В адресной строке браузера 80-й порт как правило не пишется, т.к. используется по умолчанию, но его можно и явно указать после двоеточия – http://www.ofnet.ru:80.

Приняв от нас запрос, веб-сервер обрабатывает его и в нескольких пакетах посылает нам страницу в на языке HTML – языке разметки текста, который понимает браузер.

Наш браузер, получив страницу, отображает ее. В результате мы видим на экране главную страницу этого сайта.

Зачем эти принципы надо понимать?

Например, вы заметили странное поведение своего компьютера – непонятная сетевая активность, тормоза и пр. Что делать? Открываем консоль (нажимаем кнопку «Пуск» – «Выполнить» – набираем cmd – «Ок»). В консоли набираем команду netstat -anи жмем . Эта утилита отобразит список установленных соединений между сокетами нашего компьютера и сокетами удаленных узлов. Если мы видим в колонке «Внешний адрес» какие-то чужие IP адреса, а через двоеточие 25-й порт, что это может означать? (Помните, что 25-й порт соответствует почтовому серверу?) Это означает то, что ваш компьютер установил соединение с каким-то почтовым сервером (серверами) и шлет через него какие-то письма. И если ваш почтовый клиент (Outlook например) в это время не запущен, да если еще таких соединений на 25-й порт много, то, вероятно, в вашем компьютере завелся вирус, который рассылает от вашего имени спам или пересылает номера ваших кредитных карточек вкупе с паролями злоумышленникам.

Также понимание принципов работы Интернета необходимо для правильной настройки файерволла (проще говоря брандмауэра :)). Эта программа (которая часто поставляется вместе с антивирусом), предназначенна для фильтрации пакетов – “своих” и “вражеских”. Своих пропускать, чужих не пущать. Например, если ваш фаерволл сообщает вам, что некто хочет установить соединение с каким-либо портом вашего компьютера. Разрешить или запретить?

Ну и самое главное — эти знания крайне полезны при общении с техподдержкой.

Напоследок приведу список портов, с которыми вам, вероятно, придется столкнуться:

Несколько специальных IP адресов:

Что такое маска подсети и шлюз по умолчанию (роутер, маршрутизатор)?

(Эти параметры задаются в настройках сетевых подключений).

Все просто. Компьютеры объединяются в локальные сети. В локальной сети компьютеры напрямую «видят» только друг друга. Локальные сети соединяются друг с другом через шлюзы (роутеры, маршрутизаторы). Маска подсети предназначена для определения — принадлежит ли компьютер-получатель к этой же локальной сети или нет. Если компьютер-получатель принадлежит этой же сети, что и компьютер-отправитель, то пакет передается ему напрямую, в противном случае пакет отправляется на шлюз по умолчанию, который далее, по известным ему маршрутам, передает пакет в другую сеть, т.е. в другое почтовое отделение (по аналогии с советской почтой).

Напоследок рассмотрим что же означают непонятные термины:

TCP/IP — это название набора сетевых протоколов. На самом деле передаваемый пакет проходит несколько уровней. (Как на почте: сначала вы пишете писмо, потом помещаете в конверт с адресом, затем на почте на нем ставится штамп и т.д.).

IP протокол — это протокол так называемого сетевого уровня. Задача этого уровня — доставка ip-пакетов от компьютера отправителя к компьютеру получателю. По-мимо собственно данных, пакеты этого уровня имеют ip-адрес отправителя и ip-адрес получателя. Номера портов на сетевом уровне не используются. Какому порту, т.е. приложению адресован этот пакет, был ли этот пакет доставлен или был потерян, на этом уровне неизвестно — это не его задача, это задача транспортного уровня.

TCP и UDP — это протоколы так называемого транспортного уровня. Транспортный уровень находится над сетевым. На этом уровне к пакету добавляется порт отправителя и порт получателя.

TCP — это протокол с установлением соединения и с гарантированной доставкой пакетов. Сначала производится обмен специальными пакетами для установления соединения, происходит что-то вроде рукопожатия (-Привет. -Привет. -Поболтаем? -Давай.). Далее по этому соединению туда и обратно посылаются пакеты (идет беседа), причем с проверкой, дошел ли пакет до получателя. Если пакет не дошел, то он посылается повторно («повтори, не расслышал»).

UDP — это протокол без установления соединения и с негарантированной доставкой пакетов. (Типа: крикнул что-нибудь, а услышат тебя или нет — неважно).

Над транспортным уровнем находится прикладной уровень. На этом уровне работают такие протоколы, как http, ftp и пр. Например HTTP и FTP — используют надежный протокол TCP, а DNS-сервер работает через ненадежный протокол UDP.

Как посмотреть текущие соединения?

Текущие соединения можно посмотреть с помощью команды

(параметр n указывает выводить IP адреса вместо доменных имен).

Запускается эта команда следующим образом:

«Пуск» – «Выполнить» – набираем cmd – «Ок». В появившейся консоли (черное окно) набираем команду netstat -an и жмем . Результатом будет список установленных соединений между сокетами нашего компьютера и удаленных узлов.

ИмяЛокальный адресВнешний адресСостояние
TCP0.0.0.0:1350.0.0.0:0LISTENING
TCP91.76.65.216:1390.0.0.0:0LISTENING
TCP91.76.65.216:1719212.58.226.20:80ESTABLISHED
TCP91.76.65.216:1720212.58.226.20:80ESTABLISHED
TCP91.76.65.216:1723212.58.227.138:80CLOSE_WAIT
TCP91.76.65.216:1724212.58.226.8:80ESTABLISHED

В этом примере 0.0.0.0:135 — означает, что наш компьютер на всех своих IP адресах слушает (LISTENING) 135-й порт и готов принимать на него соединения от кого угодно (0.0.0.0:0) по протоколу TCP.

91.76.65.216:139 — наш компьютер слушает 139-й порт на своем IP-адресе 91.76.65.216.

Третья строка означает, что сейчас установлено (ESTABLISHED) соединение между нашей машиной (91.76.65.216:1719) и удаленной (212.58.226.20:80). Порт 80 означает, что наша машина обратилась с запросом к веб-серверу (у меня, действительно, открыты страницы в браузере).

В следующих статьях мы рассмотрим, как применять эти знания, например общаясь с техподдержкой.

КОММЕНТАРИИ К СТАТЬЕ:

Спасибо)
Очень доступно и хорошо изложено.

Протокол TCP

Транспортный уровень

Задача транспортного уровня – это передача данных между различными приложениями, выполняемых на всех узлах сети. После того, как пакет доставляется с помощью IP-протокола на принимающий компьютер, данные должны быть отправлены специальному процессу-получателю. Каждый компьютер может выполнять несколько процессов, кроме того, приложение может иметь несколько точек входа, действуя в качестве адреса назначения для пакетов данных.

Пакеты, приходящие на транспортный уровень операционной системы организованы в множества очередей к точкам входа различных приложений. В терминологии TCP/IP такие точки входа называются портами.

Transmission Control Protocol

Transmission Control Protocol (TCP) (протокол управления передачей) – является обязательным протоколом стандарт TCP/IP, определенный в стандарте RFC 793, “Transmission Control Protocol (TCP)”.

TCP — это протокол транспортного уровня, предоставляющий транспортировку (передачу) потока данных, с необходимостью предварительного установления соединения, благодаря чему гарантирует уверенность в целостности получаемых данных, также выполняет повторный запрос данных в случае потери данных или искажения. Помимо этого протокол TCP отслеживает дублирование пакетов и в случае обнаружения – уничтожает дублирующиеся пакеты.

В отличие от протокола UDP гарантирует целостность передаваемых данных и подтверждения отправителя о результатах передачи. Используется при передаче файлов, где потеря одного пакета может привести к искажению всего файла.

TCP обеспечивает свою надежность благодаря следующему:

  • Данные от приложения разбиваются на блоки определенного размера, которые будут отправлены.
  • Когда TCP посылает сегмент, он устанавливает таймер, ожидая, что с удаленного конца придет подтверждение на этот сегмент. Если подтверждение не получено по истечении времени, сегмент передается повторно.
  • Когда TCP принимает данные от удаленной стороны соединения, он отправляет подтверждение. Это подтверждение не отправляется немедленно, а обычно задерживается на доли секунды
  • TCP осуществляет расчет контрольной суммы для своего заголовка и данных. Это контрольная сумма, рассчитываемая на концах соединения, целью которой является выявить любое изменение данных в процессе передачи. Если сегмент прибывает с неверной контрольной суммой, TCP отбрасывает его и подтверждение не генерируется. (Ожидается, что отправитель отработает тайм-аут и осуществит повторную передачу.)
  • Так как TCP сегменты передаются в виде IP датаграмм, а IP датаграммы могут прибывать беспорядочно, также беспорядочно могут прибывать и TCP сегменты. После получения данных TCP может по необходимости изменить их последовательность, в результате приложение получает данные в правильном порядке.
  • Так как IP датаграмма может быть продублирована, принимающий TCP должен отбрасывать продублированные данные.
  • TCP осуществляет контроль потока данных. Каждая сторона TCP соединения имеет определенное пространство буфера. TCP на принимающей стороне позволяет удаленной стороне посылать данные только в том случае, если получатель может поместить их в буфер. Это предотвращает от переполнения буферов медленных хостов быстрыми хостами.
Читайте также:  Оригами Бриллиант

Заголовок TCP

  • Порядковый номер выполняет две задачи:
    • Если установлен флаг SYN, то это начальное значение номера последовательности — ISN (Initial Sequence Number), и первый байт данных, которые будут переданы в следующем пакете, будет иметь номер последовательности, равный ISN + 1.
    • В противном случае, если SYN не установлен, первый байт данных, передаваемый в данном пакете, имеет этот номер последовательности.
  • Номер подтверждения – если установлен флаг ACK, то это поле содержит номер последовательности, ожидаемый получателем в следующий раз. Помечает этот сегмент как подтверждение получения.
  • Длина заголовка – задается словами по 32бита.
  • Размер окна – количество байт, которые готов принять получатель без подтверждения.
  • Контрольная сумма – включает псевдо заголовок, заголовок и данные.
  • Указатель срочности – указывает последний байт срочных данных, на которые надо немедленно реагировать.
  • URG – флаг срочности, включает поле “Указатель срочности”, если =0 то поле игнорируется.
  • ACK – флаг подтверждение, включает поле “Номер подтверждения, если =0 то поле игнорируется.
  • PSH – флаг требует выполнения операции push, модуль TCP должен срочно передать пакет программе.
  • RST – флаг прерывания соединения, используется для отказа в соединении
  • SYN – флаг синхронизация порядковых номеров, используется при установлении соединения.
  • FIN – флаг окончание передачи со стороны отправителя

Рассмотрим структуру заголовка TCP с помощью сетевого анализатора Wireshark:

TCP порты

Так как на одном и том же компьютере могут быть запущены несколько программ, то для доставки TCP-пакета конкретной программе, используется уникальный идентификатор каждой программы или номер порта.

Номер порта — это условное 16-битное число от 1 до 65535, указывающее, какой программе предназначается пакет.

TCP порты используют определенный порт программы для доставки данных, передаваемых с помощью протокола управления передачей (TCP). TCP порты являются более сложными и работают иначе, чем порты UDP. В то время как порт UDP работает как одиночная очередь сообщений и как точка входа для UDP-соединения, окончательной точкой входа для всех соединений TCP является уникальное соединение. Каждое соединение TCP однозначно идентифицируется двумя точками входа.

Каждый отдельный порт сервера TCP может предложить общий доступ к нескольким соединениям, потому что все TCP соединения идентифицируются двумя значениями: IP-адресом и TCP портом (сокет).

Все номера портов TCP, которые меньше чем 1024 – зарезервированы и зарегистрированы в Internet Assigned Numbers Authority (IANA).

Номера портов UDP и TCP не пересекаются.

TCP программы используют зарезервированные или хорошо известные номера портов, как показано на следующем рисунке.

Установление соединения TCP

Давайте теперь посмотрим, как устанавливается TCP-соединения. Предположим, что процесс, работающий на одном хосте, хочет установить соединение с другим процессом на другом хосте. Напомним, что хост, который инициирует соединение называется «клиентом», в то время как другой узел называется «сервером».

Перед началом передачи каких-либо данных, согласно протоколу TCP, стороны должны установить соединение. Соединение устанавливается в три этапа (процесс «трёхкратного рукопожатия» TCP).

  • Запрашивающая сторона (которая, как правило, называется клиент) отправляет SYN сегмент, указывая номер порта сервера, к которому клиент хочет подсоединиться, и исходный номер последовательности клиента (ISN).
  • Сервер отвечает своим сегментом SYN, содержащим исходный номер последовательности сервера. Сервер также подтверждает приход SYN клиента с использованием ACK (ISN + 1). На SYN используется один номер последовательности.
  • Клиент должен подтвердить приход SYN от сервера своим сегментов SYN, содержащий исходный номер последовательности клиента (ISN+1) и с использованием ACK (ISN+1). Бит SYN установлен в 0, так как соединение установлено.

После установления соединения TCP, эти два хоста могут передавать данные друг другу, так как TCP-соединение является полнодуплексным, они могут передавать данные одновременно.

Вопросы с тегом ‘tcp’

Количество результатов: 5421

У меня есть питон клиент TCP, который делает запрос на сервер TCP в C++. У меня нет доступа к серверу, так что я не могу изменить любой код на серверной части. Проблем.

Сокета TCP демультиплексирования в порту сервера (который прослушивает несколько соединений TCP) происходит с отдельным гнездом дескриптора, созданного для каждого уст.

С тех последнего обновления Avast Antivirus, я больше не могу подключиться к POP3 серверов электронной почты с использованием java.net.Socket. Mozilla Thunderbird рабо.

Я хочу отправить ArrayList с помощью TCP продолжительного (1мс времени перезарядки). Я могу к этому, но уже через несколько секунд я получаю вопросы, как задержка в н.

Я попытался отправить сообщение на сервер от клиента с ручным вводом, с вводом 10 пределов. его работа успешно на стороне клиента, но когда я попытался запустить серве.

Это не сумасшедший, чтобы предположить, что моя бережливость клиент будет просто потерять связь без предупреждения. В этом случае я должен обнаружить, что и переподклю.

В настоящее время я создаю простое приложение чат, который с помощью TCP моя проблема, когда я нажимаю на кнопку для запуска TCP окно замораживания и я не могу ничего .

Я пытаюсь запустить класс сервера, то клиенты. Я выбираю из меню первого выбора, затем 2 номера, которые я хочу добавить. Результат должен быть показан на консоли серв.

Im пытается установить соединение между сервером и клиентом в питоне. но программа работает только до ждет программа connection.The не может прочитать адрес. import s.

при условии, что я собственный сокет net.Listener, как я может обнаружить, что входящее соединение использует протокол SSL. Я работаю с ниже код, который отлично рабо.

Как я могу добавить tcpdump пакет в Dockerfile если базовый образ node:10.0.0 Dockerfile: FROM node:10.0.0 EXPOSE $SERVICE_PORT USER node RUN mkdir -p /home/node/ WO.

Я использую Go TCP клиент для подключения к нашему Go TCP Server. Я могу подключиться к командам сервера и работать должным образом, но каждый так часто будет необычн.

Как использовать библиотеку NIO, чтобы получить поле ACK и использовать его, чтобы восстановить проблемы СЕВЕРА. Я пытался каким-то образом, но это не работает.

им пытаются написать простую программу Server/Client в C++ на Linux (Ubuntu). Но теперь я получил проблему в моем коде сервера. Я мог бы составить код, но когда я запу.

Может колбу обрабатывать несколько запросов HTTP из одного потока TCP? Значит ли я отправить запрос, получить ответ и отправить запрос на тот же/другую страницу с помо.

Я вроде новичок в Python кодирования и я пытаюсь узнать многопроцессорные проблемы, которая у меня есть. У меня есть проект с Raspberry Pi (Linux) и с другого компьют.

Это вопрос, который появился в одном из прошлых экзаменов моего колледжа, и я совсем не понять, как это сделать. Это включает в себя чтение данных из кучу процессов, к.

У меня есть два сверстников: Алиса и Боб. Боб пытается отправить Алисе список пиров известных ему. Во-первых, Боб сообщает Алисе, сколько сверстников он, то он посыла.

Я делаю программу сокетов, от одного клиента к нескольким серверам, в интернете я не нашел информации об этом Система состоит из соединения нескольких серверов для од.

Я настраиваю сообщение между РГУ и некоторый сервер в артерия. Как пересылать сообщения поступающих от транспортных средств? Я создал RSU.ned файл с воротами: inout r.

Таким образом, у меня есть два приложения, один написан на C++ с использованием Qt5 и другой написан на Java. Приложение C++ действует как клиент, который подключается.

Я изо всех сил на большой проект, и мне нужна помощь. Чтобы дать вам контекст. У меня есть видео-канал, поступающие в UWP (от DJI SDK), и я пытаюсь получить это видео.

Я хочу, чтобы поддерживать соединение TCP, даже если IP меняется в мобильной среде. Есть ли вариант, который поддерживает сохранение соединения, когда IP изменяется на.

Я пытаюсь отправить пакет конкретных TCP на сервере, но это не кажется, что это посылает правильные данные. Как я должен идти об этом Я попробовал класс StreamWriter.

В течение нескольких месяцев я не запускать приложения .NET мы разрабатываем, которые прекрасно работали в последний раз. В то же время, я обновил свой компьютер в Win.

продолжать получать тайм-аут сеанса, не могу понять, почему сервер должен отобразить сообщение обратно. код отображается в нижней части, где первый набор кода является.

Я использую QWebSocketServer с Qt5.8. Большинство WebSocket клиентов имеет никаких проблем не подключаться к нему, но один из них вызывает сингулярное поведение. Ниж.

Что такое минимально возможное TCP размер окна приема может быть объявлено Linux ядра TCP/IP стек осущ и как я могу настроить, чтобы сделать его объявить такой один? М.

Я пишу модуль ядра, и мне нужно знать, какой порт TCP носок отправляется. «Порт» здесь означает WLAN порт, 4g порта или порта IP. Я искал информацию порта в исходном .

Я использую клиент НПМ телнет Я хотел бы проверить его первым использованием терминала с использованием Hercules.exe. Тем не менее, я всегда просто получить «время со.

В нашей производственной среде, странная проблема возникла: задержка выше низкого трафика. Тогда я строю Tcp сервера и клиента с Netty4 и передавать данные с одного со.

I`m возникли проблемы с подключением от клиента к серверу. когда более 4-х людей из одной подсети пытается подключиться к серверу клиент начинает мигать, и вы должны з.

У меня есть плагины, предназначенные для поддержки REST (поддержка метода аутентификации diffent), HTTP, TCP/IP на языке программирования C#. Когда я хочу, чтобы прове.

Я пытаюсь получить TCP метку время из пакетов для целей ЧАСОВ перекоса на моем приложении, которое размещается на EC2. В моей сети у меня есть ALB. Так что мой вопрос.

я хочу, чтобы закодировать сервера клиентского приложения. Сервер должен получить mesasages и отображать их от нескольких клиентов. На стороне сервера будет трассировк.

Я в настоящее время миграции коммутатора звездочки от глотка к pjsipИ я нахожу что-то новое, вы можете использовать различные протоколы, как UDP, TCP, TLS, WS, WSS.

У меня есть один интерфейс на устройстве, и мне нужно отправить трафик из этого интерфейса одновременно. С ниже требования sRC адрес, адрес назначения, порт источника.

я использую HttpClient.SendAsync() и возникла проблема, что происходит время от времени. Файлы я отправляю действительно мало, и я установить время до 5 секунд. Я испо.

Есть ли разница между iPhone 5s и iPhone 6 в TCP connection? Я запускать то же самое tcp код в 5с и 6, и в 6 работает нормально, но 5s внезапно остановиться при получе.

Я знаю, что это очень старый вопрос. Тревожный меня в течение 2 дней. Я пытаюсь настроить на CentOS для более 64K соединения с помощью программы прослушивания Nodejs п.

Я нахожу метод, как setReceiveBufferSize() в Java на Objective C. Я использую NSStream для соединения TCP, но не существует способа любого рода, как это. Если вы знает.

У меня есть Linux VM с 2 интерфейсами, eth0 имеет IP MGMT и eth1 имеет конфигурацию, как показано ниже ip netns exec eng51 ifconfig eth1.51 Link encap:Ethernet HWa.

я создал один пример приложения Java с использованием протокола TCP/IP, и это работает отлично, а также я создал одну программу с помощью javax.print.PrintService API .

Я пытался реализовать очень простую форму NFS с помощью TCP сокетов. Все функции были должным образом работать, кроме команды «LS». Мой план состоял в том, чтобы испол.

Я пытаюсь отправить сообщение в Android через сокет TCP, но он бы не работал. (Мой телефон клиент) Вот код из класса TcpClient: public class TcpClient < public s.

Я пытался проверить вариант TCP_QUICKACK на практике, но, кажется неудачным. У меня есть клиент-сокет приложения, написанные на C с SO_RCVBUF = 4096. Это клиентское .

У меня есть устройство, которое получает CLinux триггер из последовательного устройства – затем преобразует некоторые данные – и выводит через TCP на другое устройство.

В настоящее время я пытаюсь использовать ElectronJS построить обертки вокруг PortQry CLI от Microsoft для автоматической проверки подключения к услугам моей компании (.

Я имею клиент – серверную программу, в которой Raspberry Pi имеет клиент и компьютер содержит сервер. Я хочу, чтобы отправить изображение, захваченное пи-сервер и хочу.

Ссылка на основную публикацию